Skip to main content

Tree

BST

Hibbard deletion.

2-3

2-3 Tree is Balance Tree:

插入:

  • 1+1=2node -> 3node
  • 1+2=3node -> 4node -> 2node
  • 将 4node 结点中间元素移至父结点, 其余 2 元素分离为子 2node 节点

Red-Black

  • 基于 2-3 tree, 将 3node 用红色标记.
  • 关键: 将红色标记向上传递至根部.

基本性质:

  1. 非红即黑.
  2. 根黑.
  3. 叶黑: T.null 为黑哨兵.
  4. 红父孩子黑.
  5. 简单路径同黑.
  6. 右孩子不红:
    • Flip: 父黑两孩红 -> 父红两孩黑.
    • Left rotate: 父黑右红 -> 父左旋变红, 右孩子变黑.

基本操作:

  1. 插入: 插入红点, 旋转 + 重新着色 (反色) 保持红黑性质.
  2. 删除: 删除红点, 旋转 + 重新着色 (反色) 保持红黑性质.
    // is node x red; false if x is null ?
private boolean isRed(Node x) {
if (x == null) return false;
return x.color == RED;
}
    // make a right-leaning link lean to the left
private Node rotateLeft(Node h) {
// assert (h != null) && isRed(h.right);
Node x = h.right;

h.right = x.left;
x.left = h;

x.color = x.left.color;
x.left.color = RED;

x.size = h.size;
h.size = size(h.left) + size(h.right) + 1;

return x;
}

// make a left-leaning link lean to the right
private Node rotateRight(Node h) {
// assert (h != null) && isRed(h.left);
Node x = h.left;

h.left = x.right;
x.right = h;

x.color = x.right.color;
x.right.color = RED;

x.size = h.size;
h.size = size(h.left) + size(h.right) + 1;

return x;
}

// flip the colors of a node and its two children
private void flipColors(Node h) {
// h must have opposite color of its two children
// assert (h != null) && (h.left != null) && (h.right != null);
// assert (!isRed(h) && isRed(h.left) && isRed(h.right))
// || (isRed(h) && !isRed(h.left) && !isRed(h.right));
h.color = !h.color;
h.left.color = !h.left.color;
h.right.color = !h.right.color;
}
    // insert the key-value pair in the subtree rooted at h
private Node put(Node h, Key key, Value val) {
// insert/put new node as left/right child of leaf node
if (h == null) return new Node(key, val, RED, 1);

int cmp = key.compareTo(h.key);
if (cmp < 0) h.left = put(h.left, key, val);
else if (cmp > 0) h.right = put(h.right, key, val);
else h.val = val;

// fix-up any right-leaning links
if (isRed(h.right) && !isRed(h.left)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);

h.size = size(h.left) + size(h.right) + 1;

return h;
}

public void put(Key key, Value val) {
if (key == null) {
throw new IllegalArgumentException("first argument to put() is null");
}

if (val == null) {
delete(key);
return;
}

root = put(root, key, val);
root.color = BLACK;
// assert check();
}
    // Assuming that h is red and both h.left and h.left.left
// are black, make h.left or one of its children red.
private Node moveRedLeft(Node h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.left) && !isRed(h.left.left);

flipColors(h);
if (isRed(h.right.left)) {
h.right = rotateRight(h.right);
h = rotateLeft(h);
flipColors(h);
}
return h;
}

// Assuming that h is red and both h.right and h.right.left
// are black, make h.right or one of its children red.
private Node moveRedRight(Node h) {
// assert (h != null);
// assert isRed(h) && !isRed(h.right) && !isRed(h.right.left);
flipColors(h);
if (isRed(h.left.left)) {
h = rotateRight(h);
flipColors(h);
}
return h;
}

// restore red-black tree invariant
private Node balance(Node h) {
// assert (h != null);

if (isRed(h.right)) h = rotateLeft(h);
if (isRed(h.left) && isRed(h.left.left)) h = rotateRight(h);
if (isRed(h.left) && isRed(h.right)) flipColors(h);

h.size = size(h.left) + size(h.right) + 1;
return h;
}
    // delete the key-value pair with the minimum key rooted at h
private Node deleteMin(Node h) {
if (h.left == null)
return null;

if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);

h.left = deleteMin(h.left);
return balance(h);
}

/**
* Removes the smallest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMin() {
if (isEmpty()) throw new NoSuchElementException("BST underflow");

// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;

root = deleteMin(root);
if (!isEmpty()) root.color = BLACK;
// assert check();
}

// delete the key-value pair with the maximum key rooted at h
private Node deleteMax(Node h) {
if (isRed(h.left))
h = rotateRight(h);

if (h.right == null)
return null;

if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);

h.right = deleteMax(h.right);

return balance(h);
}

/**
* Removes the largest key and associated value from the symbol table.
* @throws NoSuchElementException if the symbol table is empty
*/
public void deleteMax() {
if (isEmpty()) throw new NoSuchElementException("BST underflow");

// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;

root = deleteMax(root);
if (!isEmpty()) root.color = BLACK;
// assert check();
}

// delete the key-value pair with the given key rooted at h
private Node delete(Node h, Key key) {
// assert get(h, key) != null;

if (key.compareTo(h.key) < 0) {
if (!isRed(h.left) && !isRed(h.left.left))
h = moveRedLeft(h);
h.left = delete(h.left, key);
}
else {
if (isRed(h.left))
h = rotateRight(h);
if (key.compareTo(h.key) == 0 && (h.right == null))
return null;
if (!isRed(h.right) && !isRed(h.right.left))
h = moveRedRight(h);
if (key.compareTo(h.key) == 0) {
Node x = min(h.right);
h.key = x.key;
h.val = x.val;
// h.val = get(h.right, min(h.right).key);
// h.key = min(h.right).key;
h.right = deleteMin(h.right);
}
else h.right = delete(h.right, key);
}
return balance(h);
}

/**
* Removes the specified key and its associated value from this symbol table
* (if the key is in this symbol table).
*
* @param key the key
* @throws IllegalArgumentException if {@code key} is {@code null}
*/
public void delete(Key key) {
if (key == null) throw new IllegalArgumentException("argument to delete() is null");
if (!contains(key)) return;

// if both children of root are black, set root to red
if (!isRed(root.left) && !isRed(root.right))
root.color = RED;

root = delete(root, key);
if (!isEmpty()) root.color = BLACK;
// assert check();
}

B

  • t: 每个内部结点至少 t 个孩子 (t-1 个 key), 至多 2t 个孩子 (2t-1 个 key).
  • 插入/删除:
    • 下溯的同时,分裂满结点.
    • 合并/上溯的同时,合并空结点.

K-Dimensional

分隔空间数据: e.g. 左子树:左下方, 右子树:右上方.

Fibonacci Heap

BST + 循环双向链表:

  • 一个根树 (根结点) 循环双向链表.
  • n 个孩子循环双向链表: 每个根树的每层结点形成一个循环双向链表.

Edit Distance

给定 cost (edit operation) 时的最小编辑费用.